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The description of strong electronic correlations far from thermal equilibrium constitutes
one of the major open questions of modern condensed matter physics. Even under the
most favorable conditions of nonequilibrium steady state, many of the concepts and tech-
niques that have proven so successful in equilibrium are simply inadequate. Recent ad-
vancements in a broad range of systems, from time-resolved spectroscopies [1, 2] to cold
atoms [3, 4] and driven nanostructures [5, 6], have opened new and exciting possibilities
for studying the nonequilibrium dynarnics in response to quantum quenches and forcing
fields. Depending on the physical context one is interested in questions of both basic and
practical nature, such as what are the underlying time scales governing the dynamics,
how long is coherence maintained, and whether and how does the system equilibrate at
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Abstract

The remarkable progress of recent vears in the fabrication and design of nanode-
vices has revolutionized the study of strong electronic correlations in such systems.
While earlier focus has centered mainly on linear response, current interest has
largely shifted to true nonequilibrium dynamics, whether under steady-state con-
ditions or in response to quantum quenches and driven dynamics. The purpose of
the proposed research is to thecretically investigate the nonequilibrium dynamics
of interacting nanodevices with a special emphasize on single-molecule transistors
(SMTs). Such devices have gained enormous interest in recent years both as the
basic building blocks of molecular electronics and as a platform for studying the
electron-phonon coupling at the nanoscale. Using the generic mode] for SMTs con-
sisting of a single resonant level coupled by displacement to a single vibrational
mode we shall (1) examnine the response of the device to a broad class of quan-
turn quenches and ac drives, {2) compute the zero-temperature conductance of an
Aharonov-Bohm interferometer with a single-molecule transistor embedded in one
of its arms, and (3) compute the nonequilibriuin heat current between an electronic
and a bosonic reservoir in a suitable variant of the Aharonov-Bohm interferome-
ter. The analytical insights gained will later be used as guidance for analyziug and
interpreting numerical computations covering arbitrary coupling strengths.

Introduction
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long times. Some questions, e.g., the issue of equilibration, often require nonperturbative
treatments even if the system 1s tuned to weak coupling.

Recent years have witnessed the development of an array of powerful numerical tech-
niques aimed at tracking the real-time dynamics of interacting low-dimensional systems.
In the more specific context of quantum impurity systems these methodologies include
time-dependent variants of the density-matrix renormalization group [7, 8], the time-
dependent numerical renormalization group [9, 10}, different continuous-time Monte Carlo
approaches [11, 13, 12, 14], and sparse polynomial space representations [15]. Despite no-
table successes, part of these methods are subject to finite-size effects and discretization
errors, while others are confined to rather short time scales. Analytical efforts in this realm
have focused mainly on suitable adaptations of perturbative renormalization-group [16, 17]
and flow-equation [18] ideas, which in turn neglect higher order terms. Exact analytical
solutions, when available, are thus invaluable both for setting a benchmark and for gaining
unbiased understanding of the underlying physics. Unfortunately such exact solutions are
restricted at present to very special models whose coupling constants must be carefully
tuned [19, 20].

The aim of the proposed research is to investigate the nonequilibrium dynamics of
interacting nanodevices, with a special emphasize on molecular devices. Single-molecule
devices have attracted considerable interest lately due to the technological promise of
molecular electronics [21]. From a basic-science perspective they offer an outstanding
platform to study the electron-phonon coupling at the nano-scale. In a typical molecular
bridge, molecular orbitals are coupled simultaneously to the lead electrons and to the
vibrational modes of the molecule, with the former degrees of freedom reduced to a single
effective band in the absence of a bias voltage [22]. A minimal model for an unbiased
single-molecule device therefore consists of a single resonant level coupled by displacement
to a single vibrational mode, as described by the Hamiltonian of Egs. (1)—(3) below. This
Hamiltonian has been extensively used in recent years to model single-molecule transistors
and will occupy a significant part of our proposed research. In particular, focusing on the
limit where the level is broad as compared to the electron-phonon coupling, we shall

1. present an asymptotically exact solution for the nonequilibrium dynamics of the
model for a broad class of quantum quenches and ac drives,

2. compute the zero-temperature conductance of an Aharonov-Bohm interferometer
with a single-molecule transistor embedded in one of its arms, and

3. compute the asymptotically exact nonequilibrium heat current between an electronic
and a bosonic reservoir in a suitable variant of the Aharonov-Bohm interferometer.

The physical understanding gained from these analytic solutious will later be used as
guidance for analyzing and interpreting numerical calculations that apply to much broader
parameter regimes. Below we present in detail our proposed research plan.



2 Nonequilibrium Dynamics of Single-Molecule Tran-
sistors

One of the common models used to describe single-molecule transistors is that of a reso-
nant level coupled to a single vibrational mode. The corresponding Hamiltonian, expected
to describe the system away from Coulomb-blockade valleys where a single unpaired spin
resides on the molecule, consists of a single spinless electronic level d' with energy ¢4, which
is coupled by displacement to a local vibrational mode b' with frequency wp. The level is
further coupled to a band of spinless electrons via the hopping matrix £, as described by
the Hamiltonian

H = Ho + Haor, (1)
where
Ho = Y ecior +1 Y (dley + cld), (2)
k &
Mawy = eahia+woblb + g(b' +b) (ﬁd _ %) , (3)
with Ay = d'd.

The traditional treatment of this Hamiltonian is based either on perturbation theory
in g in the weak-coupling regime, or on the Lang-Frisov transformation {23] and the
polaronic approximation when ¢ is small. Recently, Déra and Halbritter [24] have derived
a particularly elegant nonperturbative approach to the model, building on the observation
that the original Hamiltonian of Egs. (1)-(3) can be mapped onto an exactly solvable
bosonic form in the limit where the electronic level is broad. Using this mapping, these
authors proceeded to compute the temperature-dependent conductance of a molecular
bridge under resonance conditions. Our first goal is to extend this approach to compute
the nonequilibrium dynamics in response to a broad class of quantum quenches and drives.

2.1 Mapping onto an Exactly Solvable Form

The mapping onto an exactly solvable Hamiltonian is done in two steps: (i) Conversion of
the Hamiltonian to a continuum-limit form and (ii) Application of Abelian bosonization.
The mapping onto a continuum-limit form gives rise to a new ultraviolet cutoff — the
hybridization width [' = npet> — and an associated short-distance cutoff & = 2vp/T". The
coupling constants in the contivuum-limit Hamiltonian are renormalized according to the
new cutoff:

H = —ivp fw(x)azv,b(znwobfb%[/\(bf+b)+ed];¢f(0)¢(0); (4)
with
A = ga=2%£g,

Ed = fda=2v—F€d. (5)
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Here : ---: stands for normal-ordering with respect to the filled Fermi sea. Having a
continuum-limit Hamiltonian at hand one can apply Abelian bosonization [25] to convert
the Hamiltonian to a form quadratic in besons:

H =3 exafar +woblb+ [A® +b) + & 3 & (af + ax), (6)
k k
where a,;rc are bosonic modes, and the coefficients £, are given by
k —ak/2n
€k = o LE (7)

(L being the size of the system). This Hamiltonian, whose construction is controlled by
the smallness of the electron-phonon coupling g, the polaronic shift g?/w; and the level
energy |eq| as compared to the level width T, is quadratic in bosonic operators and can
therefore be diagonalized exactly. We use scattering theory to compute the eigenmodes
ol of the bosonic Hamiltonian, which are given by

of = o+ Aglen -+ )| (ex — w0l + (e +wo)t

+2w0AZ£g( G@ L % )] ®)

Here
9(z) = [ -} ~ 2wB(2)] (9)

is related to the phononic Green function and

%) =Ry & - =) (10

E>0 z— € z 4 €

is the corresponding self-energy. One can expand operators representing physical ob-
servables in terms of these eigenmodes, and since the time evolution of the eigenmodes
is known, this expansion allows the calculation of the real-time dynamics of these ob-
servables. The specific calculation depends on the initial state in which the system was
prepared. The most relevant observables are the phononic occupancy and displacement

fy, = bb,
A b +b
= — 11
Q 7 (11)
and the occupancy of the electronic level
1
ﬁdzd’fd=§+azgq(a;+aq). (12)
g>0



2.2 Quench Scenarios

Having these expansions at hand, several physical scenarios can be considered in which
the system is prepared in some initial state when a quantum quench is applied. The
time-dependent response of the system to the sudden quench can then be calculated.

We consider several such scenarios. In the first scenario, the electron-phonon inter-
action g is abruptly switched on. Namely, the system is prepared at time ¢ = 0 in
a disentangled state that consists of the filled Fermi sea of the conduction electrons and
some arbitrary phononic state. The electron-phonon interaction is then abruptly switched
on and the system evolves according to the full Hamiltonian. Our interest is to follow the
response of the system to that quench and examine the relaxation back to equilibrium.
Of special interest are the tiine scales and frequencies that characterize the response of
different observables to the quench, and their dependence on parameters such as the cou-
phing constant g. In addition, we can investigate the role of the initial state in which the
system is prepared prior to the quench. The ability to explore the effect of different initial
states on the behavior of the observables in question is an advantage of the solution based
on scattering states, whereas the Keldysh approach to nenequilibrium restricts the initial
state of the system to be a thermal one.

The response of the system is found to be characterized by a softened frequency w and
a decay time 7 which can be computed from the Green function g(z). The expectation
value of the phononic occupancy {7i;), plotted in Fig. 1, oscillates with frequency 2w and
decays with the relaxation time 7/2 whereas the displacement of the phonon oscillates
with frequency w and decays with time 7. This distinction, which is common to all
scenarios considered, stems from the nature of the eigenmode expansion: quantities that
are linear in the eigenmodes will oscillate and decay with frequency w and time T while
quantities that are quadratic in the eigenmodes will oscillate twice as fast and decay twice
as rapidly.

As a second scenario we consider an abrupt change of the energy level ¢5: At { = 0
the system occnpies the ground state of the Hamiltonian with ¢; = O when the value of
¢4 is abruptly changed to some nonzero value. This scenario, which breaks particle-hole
symmetry, can be realized experimentally as the energy level ¢; can be controlled quite
efficiently using suitable gate voltages. The breaking of particle-hole symmetry unpins
the level occupancy ng = {(fig) from one-half and the phononic displacement from zero.
The response of ng to the quench, plotted in Fig. 2, consists of short-time dynamics,
mediated by the conduction electrons occupying the levels near the cutoff I', followed at
longer times by damped oscillations with frequency w and the decay time 7.

The last quench scenario we consider is an abrupt change of the phonon frequency wy.
In this scenario the system is initially held at the ground state of the full Hamiltorian with
sonle wy when the phonon frequency is abruptly changed to w; = wg + dw. The system
then relaxes back to equilibriuin, at which point physical quantities obtain the same values
they would have had had the system been originally prepared with the phonon frequency
wy. This serves again as a demonstration of the therinalization property of the system,
as the final state is independent of the preparation process.
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Figure 1: Time evolution of the phonon occupancy n,(t) following an abrupt switching
on of the electron-phonon coupling ¢ at time ¢ = 0, starting from an empty phonon state.
Here g/T equals 0.229 (green}, 0.28 (red) and 0.324 (black}.

2.3 Driven Dynamics

(Quantum control of nanodevices often involves driven dynamics, where a periodic drive
is applied to the system. Such cases are usually a challenge to describe since the system
not only remains permanently far from equilibrium but it never even reaches steady state.
Remarkably, our approach allows us to describe a rather broad class of driven dynamics
where the drive couples linearly to the bosonic degrees of freedom. This class includes at
least two physically relevant scenarios where periodic forcing with frequency 2 is applied
either to the localized phonon or the electronic level.

The response of the system to such drives is characterized by a transition between
a combination of several components oscillating with different frequencies at short times
(t < 1) and an oscillation with a single frequency at long times (f » 7}. Quantities
that are linear in the bosonic eigenmodes, such as the phonon displacement and the level
occupancy, have a short-time behavior that is composed of two components oscillating
with frequencies w and 2 while at long tiines only the latter component survives. Quan-
tities that are quadratic in the bosonic eigenmodes, e.g., the phononic occupancy, have
four oscillating components at short times, oscillating with frequencies 2w, 2+ w and 2€2,
where once again only the latter component survives at long times. The fact that the
system oscillates with a single frequency at long times, instead of developing all harmon-
ics of the driving frequency €2, is due to the restriction to the weak-coupling regime. We
expect all harmonics to appear as the electron-phonon interaction is increased beyond the
applicability of our approach.

The amplitude of the oscillations at long time depends not only on the strength of the
driving force but also on the driving frequency 2, with a sharp resonance at 2 = w and a
vanishing amplitude at 2 = wp. In Fig. 3 we have plotted the amplitude of the long-time
oscillations of the level occupancy as a function of the driving frequency, when the drive
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Figure 2: Time evolution of the occupancy n4(¢) of the localized electronic level, following
an abrupt change in its energy from e¢; = 0 to ¢4 # 0. Here g/I' = 0.324. Note that
ng(t) — 1/2 depends linearly on €¢;. Inset: A zoom on the short-time behavior which is
well described by a Lorentzian form (not shown).

is applied to the level itself.

3 Aharonov-Bohm interferometer with a molecular
bridge placed on one of its arms

Following the study of quench and driven dynamics in a single-molecule transistor our
next goal is to apply the same methodology to another setting of current interest — an
Aharonov-Bohm interferometer with a single-electron transistor embedded in one of its
arms {see Fig. 4 for a schematic sketch of the device). The study of Aharonov-Bohm
interferometers with a quantum dot in one of its arms has been a thriving field of research
over the past fifteen years [26], driven by the measurements of phase rigidity [27] and phase
lapses [28] in the transmitted current. By replacing the quantum dot with single-molecule
transistor one can extend these studies to the effect of the electron-phonon coupling. The
corresponding Hamiltonian reads

H o= —ivp 3. / " G ()0 tbalz)dz + wob'h + ead'd + (b + B)(d'd — 1/2)
a=L R~ "®

+ 2 ta{vh(0)d + da(0)} + tLa {e UL (0)¥R(0) + e PL Oy (0)},  (13)

where 9} (z) is the field operator for lead a, £, is the direct tunneling amplitude between
the leads representing the lower (free) arm of the interferometer, and p = 27®/®; is the
flux ¢ threading the ring measured in units of the flux quantum ®q = kc/e.

We plan to consider two variants of this setting, distinguished by how efficiently is the
vibrational mode coupled to additional environment degrees of freedom other than the
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Figure 3: The asymptotic long-time amplitude of oscillations Az of the level occupancy
vs. the driving frequency 2 for two different strengths of the electron-phonon coupling g.

electronic ones specified in Eq. {(13). In the first case the vibrational mode on the molecule
will be taken to be isolated from the environment, while in the second scenario it will be
assumed to be coupled to its own bosonic bath, which may represent, e.g., the substrate
phonons. In the latter case the Hamiltonian of Eq. (13) should be supplemented with the
Hamiltonian of the bosonic bath and its coupling to the molecular vibrational mode, for
which we shall use the generic Hamiltonian

Hoatn = 3 walSifn+ (b1 + ) 3 M (81 + Ba) - (14)

Here 8! represent the bosonic modes of the bath, coupled by displacement to the phonon
bi. All information of the coupling to the bath is contained in the coupling function

J(w) = ZA&J(&J — Wn), (15)
for which we shall take the standard power-law form
J(w) = 2maue (wﬁ) 8w, ~ w) (16)

with the high-energy cutoff w.. The power s = 1 corresponds to an ohmic bath.

A separate question pertains to each variant of the device. In the isolated case we
are interested in the conductance in response to a chemical potential difference between
the leads, and in particular in the effect of the electron-phonon coupling on it. In the
case of a bosonic bath we seek to compute the heat current that is exchanged between
the bosonic and fermionic baths when a temperature gradient is applied between the two.
Both questions have attracted considerable interest lately [29, 30, 31].

Focusing again on the limit of a broad level we succeeded, as a first step, to map each
of the two variants of the Aharonov-Bohm interferometer onto a continuum-limit Hamil-
tonian similar to that of Eq. (1), which in turn can be mapped using bosonization onto &
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Figure 4; Schematic sketch of an Aharonov-Bohm Interferometer with a Single-Molecule
Transistor Embedded in One of its Arms.

form quadratic in bosons. In case of coupling to a bosonic bath our mapping supports a
finite temperature gradient between the electronic and bosonic baths, providing thereby
a rare example where asymptotically exact results can be obtained for the nonlinear heat
transport in an interacting nanodevice. Our current goal is to complete the calculation
of the quantities of interest and their analysis along the lines described below.

In the isolated case, the zero-temperature conductance can be related to the retarded
dot Green function, evaluated at zero energy [32]. The latter can be related, through the
Friedel-Langreth sum rule [33], to the occupancy of the dot, which can be computed from
our solution. The case involving the bosonic bath requires application of the Keldysh
technique in order to calculate the relevant Green functions pertaining to the heat flow.
Teking advantage of the quadratic nature of the bosonized Hamiltonian these functions
can be computed exactly.

4 Numerical Evaluation of Quench Dynamics

In section 2 we described our asymptotically exact approach for computing the nonequilib-
rium dynamics of & single-molecule transistor. This solution provides both analytical pre-
dictions and an analytical framework for analyzing and interpreting such dynamics. The
solution is confined, however, to the limit of a broad level and near-resonance conditions.
In a subsequent study we plan to extend our investigation to arbitrary couplings. To this
end, we plan to employ the time-dependent numerical renormalization group [9, 10|, which
is a powerful tool for tracking the quench dynamics of quantum impurity systems. Qur
main goal is to examine which aspects of our solution persist away from weak coupling,
and what are the new qualitative features that are introduced as the electron-phonon
coupling is increased. Particularly interesting is the regime where the phonon is strongly
damped, where we expect a significant change in the damped oscillations depicted in
Fig. 1.
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