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1 Preface

In the well known Prisoner’s Dilemma, two people that are following the only rafional behavior
end up in the worst possible outcome. Unfortunately, this example is a useful analogy for many
situations in real life, where (individually) raticnal behavior leads to a disaster for the society.

With the rapid delegation of decision making to automated agents, the role of game the-
ory within artificial intelligence is becoming increasingly important, In particular, game-
theoretical principles must be taken into account in the design of systems and envircnments in
which agents operate (human and automated alike).

My research is multi-disciplinary in nature, involving tools and ideas from Economics,
Computer science, Mathematics, Artificial Intelligence, and Cognitive science. My work so
far consists of several projects in various domains. While all project ultimately aim for a
better understanding of cooperation in games, they study different problems and use different
theoretical tools. These span from Voting Theory to Cooperative Games to Machine Learning
and the suggestion of new equilibrivm concepts. Indeed, I believe that there is no one way
to model cooperation, as this is an abstract concept whose realization strongly depends on the
domain and the underlying assumptions.

The proposal is organized as follows. In Section 2 is focused on one proiect that is de-
scribed in detail, This project was selected since it has both substantial results that had already
been published, and some very promising directions that I currently work on. In the Section 3,
other projects will be briefly described. In the closing section, I will discuss the strong assump-
tion of rationality that underties standard game-theoretic analysis and how it can be relaxed in
the quest for cooperation.

It is tmportant {o note that the work described here has been accomplished by joint work
with many other researchers. Their names are explicitly mentioned when discussing unpub-
lished work (coauthors of published work are visible in the list of publications).

A short version of this proposal was published in the proceedings of WCAI-2011 [25].

2 Strategyproof Classification
2.1 Background

An essential part of the theory of machine learning deals with the classification problem; a
setting where a decision maker must classify a set of input points with binary labels, while
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minimizing the expected error. In contrast with the standard assumption in machine learning,
we handle situations in which the labels of the input points are reported by self-interested
agents, rather than by a credible expert. Agents might lie in order to obtain a classifier that
more closely matches their own opinion, thereby creating a bias in the data: this motivates the
design of mechanisms that discourage false reports.

To describe the problerm in a more precise way, we are interested in the design and analysis
of classification mechanisens that are strategyproof (SF). A mechanism is SP if none of the in-
volved agents (the experts in out case) can benefit by tying. It turns out that there is an inherent
tradeoff between our requirements, as strategyproofness can be achieved by ignoring some of
the input, but this comes at the expense of suboptimal classification results. We therefore seek
for mechanisms that are both 8P, and guarantee good approximation resuits, compared to the
optimal classifier.

Motivating example Consider a large organization that is trying to fight the congestion in.
‘an internal email system by designing a smart spam filter. Due to reasons of organizational
uniformity, the filter cannot be personalized. That is, ali employees will be affected by the
same filter. In order to train the system, managers are asked to review the last 1000 emails sent
to the “all employees™ mailing list and classify them as either “work-related” (positive label)
or “spam” (negative label). Whereas the managers will likely agree on the classification of
some of the messages {e.g., “Buy Viagra now!!!"” or “Christmas Bonus for all employees™),
it is likely that others {e.g., “Joe from the Sales department goes on a lunch break™) would
not be unanimously classified. Moreover, as each manager is interested in filtering most of
what he sees as spam, a manager might try to compensate for the “mistakes™ of his colleagues
by misreporting his real opinion with respect to some cases. For example, the manager of
the R&D department, believing that about 90% of the Sales messages are utterly unimportant,
might classify @il of them as spam in order to reduce the congestion. The manager of Sales,
suspecting the general opinion on her department, might do the exact opposite to prevent her
e-mails from being filtered.

Similar examples for biases are common in aggregating data from Internet polls or sales
data from local retailers (see cited papers for details). In the remaining of this section, I will
survey background literature (including resuits from my M.Sc. Thesis), present the formal
framework and some of the prominent results.

2.2 Related and previous work

Research on Strategyproof Leaming typically followed two primary directions. The first is
the design and analysis of specific strategyproof mechanisms that guarantee optimal or near-
optimal results for certain learning problems. Such mechanisms have been proposed for ex-
ample in the supervised regression domain [37, 12].

A second, compiementary, direction explores the limits of such mechanisms, by showing
the best possible approximation ratio that SP mechanisms can guarantee on certain problems.
The study of classification mechanisms was initiated in my Masters thesis (see {24, 29,30, 31]),
and there have also been results of similar flavor for unsupervised learning models [38]. To-
gether, these two directions gradually compose a full picture of the restrictions and assumptions
that allow for effective SP learning.



While our results in SP classification have been motivated by problems in the area of ma-
chine learning, SP classification is just part of the rapidly developing subfield of mechanism
design called approximate mechanism design without money (AMDw/oM). Such mechanisms
are being studied in multiple domains, including voting, resource allocation, matching prob-
lems, and even money-free auctions [2, 14, 17, 18, 19]. These domains are often intercon-
necied, as results and techniques from one domain can be applied in others; proofs in different
combinatorial settings, such as voting, matching, and labeling, often tackle similar issues like
continyity and private information.

We recently observed that certain problems in SP classification, Judgment aggregation on
binary domains [22, 13] and in facility location [1, 23, 39] can be treated within a unified
framework. Our initial results indicate that techniques from SP classification are useful in
these other domains as well, See more on this application in Section 2.6,

2.3 Model

Let X be an input space, which we assume to be either a finite set or some subset of R%. A
classifier or concept ¢ is a function ¢ : X — {+, —} from the input space to the labels {+,—}.
A concept class C is a set of such concepts. For example, the class of linear separators over B¢
is the set of concepts that are defined by the parameters a € R and & € R, and map a point
x € R%to+ ifandonly ifa-x+ 52> 0.

Denote the set of agents by I = {1,...,n}, n > 2. The agents are interested in a (finite)
set of k data points X € A*. We typically assume that X is shared among the agents, that
is, all the agents are equally interested in each data point in X.! This plausible assumption,
as we shall see, allows us to obtain surprisingly strong results. Naturally, the points in X are
commen knowledge.

Each agent has a private fype: its labels for the points in X. Specifically, agent ¢« € I holds
a function Y; : X — {+, —}, which maps every point x € X to the label Y;(z) that i attributes
to z. Each agent ¢ € I is also assigned a weight w,, which reflects its relative importance; by
normalizing the weights we can assume that 3 .., w; = 1. Let §; = {{z,Yi(z)) : = € X}
be the partial dataset of agent 4, and let S = (51,...,.5,) denote the complete dataset. S;
is said to be realizable w.r.t. a concept class C if there is ¢ € C which perfectly separates the
positive samples from the negative ones. If 5; is realizable for all ¢ € [, then S is said to be
individually realizable. Figure 1 shows an example of a dataset with a shared set of points X.

We use the common 0-1 loss function to measure the error, The risk, or negative utility, of
agent i € I with respect te a concept ¢ is simply the relative number of errors that ¢ makes on
its dataset. Formally,

Rie.S) = ;@A = S l@A%@l, W
{z.Y}ES: TEX

where [ A] denotes the indicator function of the booltean expression A. Note that S; is realizable
if and only if min.ec Ri{e, ) = 0. The global risk is defined as

Ri(c,$) = > wi-Rifc, §) = %Z 3w [e(z) # Yal=)] 2)

el el reX

1Some of our previous work relaxes this assumption [31].



Figure 1: An instance with shared inputs. Here, X = R?, C is the class of linear separators
over R?, and n = 3. The data points X of alt three agents are identical, but the labels, i.e.,
their types, are different. The best classifier from C with respect to each S; is also shown (the
arrow marks the positive halfspace of the separator). Only the rightmost dataset is realizable.

2.4 Mechanism Properties

A deterministic mechanism M receives as input a dataset 5, and outputs a classifier c € C. We
implicitly assume that the information on the weights of the agents is contained in the dataset.

A randomized mechanism is identified with a probability distribution py over § < €. We
restrict our attention to probabilities with a finite support. That is, for every dataset S, the
mechanism M returns ¢ € C, with a probability of py(c|S).

When measuring the risk, we are interested in the expected number of errors that the mech-
anism makes on the given dataset. Formally, R,(M(S), 8} = E,,, [Ri(c, S} | S], and the global
risk is defined analogously.

For any {complete or partial) dataset S C S, the best available classifier with respect to the
dataset 5" is referred to as the empirical risk minimizer — a common term in machine learning
literature. Formally, erm(S") = argmin o 3~ e s lc(2) # 9.

For the complete dataset, we denote the best classifier by ¢*(8}, and its risk by +*(5)
{or simply ¢”, r* if S is clear from the context). That is, ¢*(S) = erm(5) and r*{(§) =
R;{e*(5). 5).

The simple mechanism that always computes and returns ¢*(5) is referred to as the ERM
mechanism. Similarly, a mechanism which returns the best classifier with respect to a partial
dataset of a specific agent (e.g. erm( 51 )) is calied a dictator mechanism.

We measure the quality of the outcome of a mechanism using the standard notion of mul-
tiplicative approximation.

Definition 2.1. A mechanism M is an c-approximation mechanism if for any dataset 8 it holds
that Ry (M(S),5) < a-r*(5).

We emphasize that an agent may report different labels than the ones indicated by V; (i.e.
lie). We denote by ¥, : X — {+,—1} the reported labels of agent i. We also denote by
S; = {{r,Y(z)} : = € X} the reported partial dataset of agent 7, and by § = (51,...,5,.)
the reported dataset. :

Strategyproofress implies that reporting the truthful types is a dominant strategy for all
agents, For a dataset S and i € I, fet 5_; be the complete dataset without the partial dataset of
agent i.



All Classes (shared inputs) Binary decision
general datasets | realizable datasets (CI=2)
WRD 3 2 3
CRD 3-2 2—1 2
RRD >3 22 3
best upper bound || 3 — 2 (CRD) 2 — 2 (RRD) 2 (CRD)
lower bound 32 1 2

Table |: Summary of results.

Definition 2.2. A (deterministic or randomized) mechanism M is strategyproof (SP) if for every
dataset S, for everyi € I, and S;, R:{{M(S}, S} < R;(M(5;,5_;),5).

Our goal is to design mechanisms that are both 8P and guarantee a low worsi-case approx-
imation ratio (in expectation).

There 15 an inherent tradeoff between strategyproofness and good approximation. The
ERM mechanism (which always returns erm{.5)), for example, is a 1-approximation mech-
anism, but is not SP (as we show in the next section), On the other hand, a mechanism ¢hat
selects agent I as a dictaror, and returns erm( Sy ) is clearly SP but in general may give a very
bad approximation (e.g. if all other agents disagree with agent 1).

2.5 Results

Regarding deterministic mechanisms, it can be shown that no SP mechanism can guarantee a
finite approximation ratio without using randemization {30, 31]. We therefore only present our
results regarding randomized mechanisms. For reasons of brevity, al! results are summarized
in a single table, rather than presented as theorems. Proofs are available on the ciied papers.

The mechanisms The most simple mechanism is weighted random dictator (WRIY) mech-
anism, which works as follows: W.p. of w;, the mechanism select agent ¢ as a dictator, and
returns erm(5;). It is easy to see that this mechanism, as well as any other randomization of
dictators, is SP. This is since no agent has an incentive to lie, whether he is selected or not.

An improvement of the WRD is the convex-weight random dictator (CRD), which selects
agent i w.p. proportional to t=i-, The realizable-weight random dictator (RRD) is a variation
of it, which was designed 10 handle realizable datasets (its full description is omitted). Clearly
both mechanisms are SP. Their approximation ratios are available in Table 1.

Lower bounds In the bottom row of the table, it can be seen that in the general (non-
realizable) case, the CRID mechanism is the best possible SP mechanism. The proof involves
several interesting techniques, and relies on impossibility results from social choice theory, We
conjecture that the upper bound for realizable datasets is tight, but this remains as a question
for future research.



Generalization from samples In the standard supervised learning maodel, the learning al-
gorithm is used on data sampled from some distribution, in order to be applied on the same
distribution in the future. We would like to know that our mechanism still guaraniee good
approximation w.r.t. to the distribution and not just w.r.t. the training set. We provide several
PAC-style bounds, which show that the expected error of our mechanisms can be arbitracily
close to the approximation bounds in Table 1. We discuss the exact game-theoretic assump-
tions required for the mechanisms to work, and prove that a polynomial number of sampies is
sufficient for the bounds to hold,

2.6 Discussion and current research

Part of the importance of our results lies in their implications on the related probiems men-
tioned in Section 2.2. As one exampie, the described mechanisms can be generalized to
random-selection mechanisms in arbitrary metric spaces, thereby sotving facility location prob-
lems [1]. Also, cur impossibility proof tackles general issues, such as continuity and private
information. This will be relevant to the siudy of lower bounds in other domains.

The application of our tools and results to these domains also contributes to the expansion
of the AMDw/oM approach. Within judgment aggregation, there is beginning to be a charac-
terization of strategyproof rules, analogous to the trend that existed in the domain of facility
location before the explicit introduction of AMDw/oM. Concepts that have played an impor-
tant role in our strategyproof classification work, such as the emphasis on social welfare and
approximation, seem to be pertinent in judgment aggregation as well.

Interestingly, the techniques we used thus far seem insufficient for proving lower bounds
(both deterministic and randomized) in realizable scenarios. Since realizablility is common
and sometimes necessary (e.g. in judgment aggregation}, it is important to close these gaps.
and we are currently studying this problem.

Future directions New models of strategic leaming that better encapsulate the practical
challenges of learning theory and game theory should be developed. One example to a varia-
tion of the current model is a more realistic description of public and private information, as
well as the information that agents are assumed to have on the preferences of other agenis.
Other variations may include the use of various loss functions, that are commonly used in the
machine learning literature, as well as in actual off-the-shelf learning algorithms (for example
SVM).

Another important line of study is an empirical validation of the actual bounds of SP mech-
anisms (which might prove better that the theoretical bounds). Such experiments should also
explicitly compare SP mechanisms te naive algorithms, either on synthetic data assuming spe-
cific well-defined types of strategic behavior (in the spirit of [37]); or with actual human experts
acting strategically.



3 Other Projects

3.1 Cooperative games and the Cost of Stability

In many settings, such as pnline auctions and other types of markets, agents act individually.
In this case, the standard notions of noncooperative game theory, such as Nash equilibrium or
dominant-strategy equilibritm, provide a credible prediction of the outcome of the interaction.
However, another frequently occurring type of scenario is that agents need to form teams to
achieve their individual goals. In such domains, the focus turns from the mteraction between
single agents to the capabilities of subsets, or coalitions, of the agents.

Cooperative games (ak.a. coalitional games) are a rapidly developing branch of game
theory, which aims to describe and predict the coalitions that are most likely to arise in certain
interactions, and how their members distribute the gains from cooperation (see e.g. [36] for an
overview), When the agents are selfish, the latter question is obviously of great importance.
Indeed, the toral utility generated by the coalition is of little interest to individual agents; rather,
each agent aims to maximize her own utility. Thus, a stable coalition can be formed only if the
gains from cooperation can be distributed in a way that satisfies all agents.

The most prominent sohution concept that aims to formalize the idea of stability in coali-
tional games is the core. Informally, this is an allocation of the total profits such that every
coalition is allocated at least what it can gain by itself {and thus has an incentive to partici-
pate). However, this concept has an important drawback; the core of a game may be empty.
In games with empty cores, any outcome is unstable, and therefore there is always a group of
agents that is tempted to abandon the existing plan. This cbservation has triggered the devel-
opment of alternative solution concepts in several directions. These include relaxations of the
core such as the least core and cores in social contexts; and different notions of stability, such
as the Nucleolus and the Bargaining Set [8, 42, 3].

In a line of recent papers we approach this issue from a mechanism design perspective (see
[6, 5,40, 26, 34], and a follow up on our work by Aziz et al. [4]). Specifically, we examine the
possibility of stabilizing the outcome of a game using an external subsidy. Under this model,
an exiernal party, which can be seen as a central anthority interested in stable outcome of the
system, is willing to provide a supplemental payment if il agents cooperate. The minimal
subsidy that can stabilize a game is known as its Cost of Stability. Previous work in economics
focused on other aspects of subsidies in coalitional games [20, 7].

In our papers, we study bounds on the Cost of Stability in various games and suggest
algorithms to compute it efficiently, when possible.

Current and future work Our current line of study focuses on gaining a better understand-
ing of the Cost of Stability, and in particular its relations with other solution concepts such as
those mentioned eatlier.

3.2 Social Choice

Social choice theory is perhaps the oldest field in game theory, with concrete roots back in the
18th century [10]. Its applications are not restricted to political elections, as collective decision
making in the modern world occurs everywhere and involves committees, firms, interest groups
and even computerized agents. Much of the theory is dealing with the issue of manipulation,



when voters report false preferences in an attempt to bias the elections. Such strategic behavior
is typically considered hazardous, as it means that the outcome of the elections does no longer
reflect the true preferences of the society (similarly to the problem that we challenged in the
strategyproof classification project). The severity of this problem was accentuated in the 70's,
when it was proved that in every reasonable voting system some voters may be motivated to
lie [16. 41].

Researchers in economics and political sciences have been suggesting various solutions to
manipulations, where in the last two decades an unexpected assistance arrived from the field
of artificial intelligence (see an overview in [15]). an effort that I also contributed to [28, 32].

Bowever, even if individual preferences are known and voters are truthful, the fact that
there are many different voting systems suggests that the “preferences of the society” can be
interpreted in multiple ways.? Our initial results indicate situations in which strategic behavior
in the common Plurality voting system in fact promotes candidates that are more acceptable
{(according to other systems). Other studies support similar conclusioas in various contexts [35,
441,

In our study [27], we considered a voting scenario where voters can change their vote
according to the current score of each candidate {which is a public knowledge). The winner is
determined when no voter is willing to change her vote. We assumed that voters are unaware
of the hidden incentives of other voters, and that they act myopically, i.e. thinking only one
step ahead. Such behavior can be justified in this context, as the voter always has the option
to change the vote again later. We proved conditions under which convergence is guaranteed,
and analyzed the rate of convergence.

Corrent and future directions Further study of the principles that guide the decision mak-
ing of (human) voters, without necessarily tagging it as a “negative” behavior, would help us to
better understand the nature of collective decision making and voting processes. and possibly
to improve them. More specificaily, we are interested in comparing our {simple} behavioral
assumptions with actual human behavior (see also the closing section), and enhance our formal
model accordingly.

3.3 Better for Everyone: Improving leasing agreements

While most of my work deals with abstract models of interaction, this approach can most
certainly be applied to improve our everyday life. One problem that can be tackled using
better mechanismes, is the problem of excessive use in public resources. In a recent paper [33],
we analyzed the standard car ieasing agreements where the fuel of an employee is included
in the deal, and is paid for by the hiring company. It is known from previous studies that
such arrangements significantly increase the total mileage, which bares grave effects on road
congestion, air pollution, and prompts other environmental and social hazards [9]. This is a
ciear case where a rational behavior on the part of the individual (using free fuel) s destructive
for the society.

Using a game-theoretic analysis, we showed that an alternative leasing model, in which
the employee pays for her own fuel, induces a new equilibrium between the company and its

2This is in contrast to the problem of strategyproof classification, where there is a more explicil standard for system
performance.



employees. In the new outcome everybody gains (compared to the cwrrent equilibrium), as
both the company and the employee save money and enjoy lighter congestion. We further
discussed possible explanations for the unpleasant fact that paid-for fuel is still prevalent, and
how alternative agreements can be promoted. In this work we do not make any assumptions
on the actual price of fuel, work, etc., but only assume that there is decreasing marginal utility
from driving more, which is a reasonable assumption.

The described situation is not unique to the leasing world, and is in fact common whenever
there is a valuable resource given free of charge. This is since in many cases the resource (fuel
in our case) is not really free. There are explicit costs (production and transfer) and implicit
costs (environmental effects), that are being externalized on the the other employees and on
the public. The use of mechanisms, such as the altermative leasing model described here,
guarantee that each user bares the costs of his own used resource, and will therefore refrain
from excessive use.

Current and future directions In addition to natural future directions, such as extending
our model to consider taxation effects, we are coltaborating with “Transportation Today and
Tomorrow™, an ofganization that promotes sustainable transportation solutions. Hopefully,
theoretic results such as ours can be used tc accentuate the conclusions of field research re-
garding paid-for fuel. A joint effort may be able to persuade decision makers that replacing
the standard leasing model will be better for everyone.

3.4 New solution concepts

Solution concepts in game theory are intended to predict the expected behavior of agents in
various interactions, under certain assumptions on their capabilities. The best known exam-
ple is Nash equilibrium, which assumes that every single agent will follow his best possible
strategy, but agents cannot (or are not allowed to) make joint deviations from the equilibrium
profile. Many other solution concepts for normal form games have been suggested, for exam-
ple to deal with such joint deviations (strong equilibrium) or with multiple equilibria (Pareto
efficiency). More equilibrium concepts have been formed for extensive form games (subgame
perfect), coalitional games (see Section 3.1), and other types of games.

Choosing which concept to apply depends ultimately on the underlying assumptions one
makes on the game and the participating agents. This is particularly important in mechanism
design, where the designer strives to implement a certain outcome or a desired property (e.g.
maximizing revenue or social welfare). It is easier, for example, to guarantee that a some
action will be a Nash equilibrium, than making it a sttong equilibrium. However, if players in
the considered game have no way to communicate then joint deviations are unlikely, and thus
strong equilibria might be {00 strong a requirement. A rich repertoire of selution concepts is
therefore a necessary tool in mechanism design.

In a recent paper with Feldman and Tennenholtz (in submission}, we introduced siabil-
ity scores — a quantitative measure to the stability of an outcome based on the counting the
coalitions that might deviate. This measure allows us to compare muitiple Nash equilibria for
example, and identify the one more stable against coalitional deviations. As an exmaple appli-
cation, we analyzed the stability of two common ad auction mechanism, showing that under
certain assumptions on bidders’ valuations one of the mechanisms is far more stable.



Current and future directions Other than applying the stability score measure to various
domains, we are also working on certain refinements of other equilibrium concepts in normal
form and extensive form games.

4 Beyond rational agents

Standard game theory typically makes the assumption that behavior of agents is rational in
the sense that agent are not only self-interested, but also maximizing their utility, where this
“utility” follows well defined mathematical principles.® In particular agents are assumed to
be risk-neutral and games are invariant under certain simple changes. Moreover. agents are
assumed to have perfect knowledge of their environment, and t¢ make the best rational de-
cisions based on this knowledge. Most of my own work thus far is using the same standard
assumptions. The iterated voting project is the oaly partial exception, where we tried to make
minimal assumptions on the rationafity and knowledge available to the voiers.

Evidence from psychological studies in the last four decades suggests that human decision
makers are subject to consistent biases that can be measured and predicted. Such biases have
been thoroughly investigated in the context of a single decision maker (e.g., prospect theory
by Kahneman and Tversky [21]). Following experiments in decision making, many empirical
findings in games played by human players have been collected by Camerer {11}, and show
similar biases.

While early observations date back o the 19th century, Camerer and others have also made
efforts to treat cognitive and behaviorzal findings within the formal framework of game the-
oty, in what has been termed behavioral game theory. Within Al similar ideas have been
advocated under the title of bounded rationality, termed by Herbert Simon [43]. Neverthe-
less. mainstream work within game theory has remained largely unaffected by this progress.
Observed biases are usually ignored. especially when one treats game theory as a branch of
mathematics rather than a social science.

I believe that while game theory can be studied purely from a mathematical perspective,
much of its appeal is derived by the perception that it does help us to understand and predict
human behavier in situations of conflict, and to design appropriate mechanisms. In order
to have a real scientific value, a theory cannot ignore findings in the world that consistently
contradict its predictions. In fact, correctly formalizing cognitive biases and treat them within
the theory poses a great challenge that may also lead to substantial theoretical breakthroughs.
In future studies, I intend to better understand how actual players behave and cooperate in
various interactions (“games”™), in light of the abundant theoretical and experimental findings
on single decision makers. These behaviors should be either explained by classical solution
concepts (Nash equilibrium, the Core, the Minmax value, etc.), or induce the development
of new ones. In particuiar, new solution concepts will shed a new light on the design of
mechanisms that will increase cooperation between actual people in real-world situations.

That said, behavioral game theory is new to me. and I am still in the reading phase. There-
fore it is hard for me to predict at this stage to what extent such ideas will shape my PhD
thesis.

3These have been explicitly stated by von-Neumann and Morgenstern [45].
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